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Abstract

This paper presents an exact analytic solution for a finite isotropic circular cylinder of diameter D and length 2L
subjected to the diametral point load strength test (PLST). Two displacement functions are introduced to uncouple the
equations of equilibrium, and two new series expressions for these functions are proposed in terms of the Bessel and
modified Bessel functions of the first kind, the trigonometric functions and the hyperbolic functions. The contact
stresses between the curved surface of the cylinder and the spherical heads of the indentors are expanded into double
Fourier series expansion in order to match the limiting values of the stress field on the boundary. Our numerical results
show that tensile stress concentrations are developed near the point loads, compared to the roughly uniform tensile
stress at the central portion of the line between the two point loads. The pattern of tensile stress distribution along this
line resembles that obtained for a sphere under the diametral PLST (Chau, K.T., Wei, X.X., 1999. Int. J. Solids and
Struct. 36 (29), 4473-4496) and a cylinder under the axial PLST (Wei, X.X., et al., 1999. J. Eng. Mech. ASCE 125 (12),
1349-1357). The maximum tensile stress decreases with the increase of Poisson’s ratio, the contact area, the radius of the
spherical heads of the indentors, but increases with the diameter of the cylinder. It also decreases drastically with the
increase of L/D for short cylinders (say L/D < 0.4), but remains roughly constant when L/D is long enough (say
L/D > 0.7). Both the predicted size and shape effects of specimens on the diametral PLST agree with our experimental
observations. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Diametral point load strength test; Finite solid cylinders; Non-axisymmetric deformation; Stress analysis; Displacement
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1. Introduction

Indirect tensile strength is more useful than direct tensile strength in rock mechanics application, partly
because tensile stress field in rock mass is usually induced indirectly by compressive deviatoric stresses and
partly because direct tension is difficult to apply to rock specimens without inducing any eccentric mo-
ments. The point load strength test (PLST) is one of the most popular indirect tensile strength tests used in
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Fig. 1. A cylindrical rock specimen subjected to the diametral PLST. The origin is at the center of the cylinder and the indentors act
along a diameter passing through the origin.

rock engineering. The strength index measured in this test is called the point load strength index (PLSI),
which is a measure of the indirect tensile strength and has been correlated empirically to both the tensile
strength and compressive strength of rock. The PLST has been applied most commonly to cylindrical
specimens, either axially or diametrally. But as remarked by Chau (1998), the diametral PLST is usually
preferred (Bieniawski, 1975; Hassani et al., 1980), and thus the focus of the present paper is on the stress
analysis for cylinders under the diametral PLST given in Fig. 1.

The diametral PLST has been investigated by many experimental studies (see the review by Chau
(1998)), but there are relatively few theoretical works on the PLST. Theoretical analyses have been carried
out for the PLST on isotropic spheres (Sternberg and Rosenthal, 1952; Hiramatsu and Oka, 1966) and
anisotropic spheres (Wei and Chau, 1998; Chau and Wei, 1999), for the axial PLST on solid cylinders
(Peng, 1976; Wijk, 1978; Chau and Wong, 1996; Wei et al., 1999), and for the diametral PLST on solid
cylinders (Wijk, 1980; Chau, 1998).

In particular, regarding the tensile stress concentration in cylinders under the diametral PLST, Wijk
(1980) provided an approximation for the tensile stress at the center of a solid circular cylinder. The tensile
stress distribution along the line joining the two applied point loads is interpolated between the tensile
stresses obtained from the solution for the PLST on spheres by Hiramatsu and Oka (1996) and from the
solution for the axial PLST on finite circular plates by Wijk (1978) (see Fig. 2 of Wijk (1980)). Recently,
Chau (1998) obtained an analytic solution for a finite cylinder under the diametral PLST with shear dis-
placements constrained on the two end surfaces, whereas in actual PLST the end boundaries are shear
traction-free. The main reason why Chau (1998) considered this kind of modified end boundary is to
simplify the problem and to make it mathematically tractable. To date, there is no exact analysis available
for evaluating the stresses within a finite solid cylinder under the diametral PLST.

In addition, the stress analysis for elastic isotropic cylinders under various boundary conditions is one of
the most fundamental problems in theoretical elasticity and has a rich history in the field of solid me-
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chanics. As remarked by Filon (1902), the general stress analysis (including non-axisymmetric) for an in-
finite circular cylinder subjected to an arbitrary surface load was considered independently by Pochhammer
(1876) and Chree (1889). One of the commonly investigated problems for finite cylinders under axisym-
metric deformation is the compression of cylinders between two blocks at the end surface. This problem
was first considered by Filon (1902), and subsequently by many others (see the review by Chau (1997)).
More general stress analyses for axisymmetric problems for circular cylinders were considered by Saito
(1952, 1954) and Ogaki and Nakajima (1983). The only analysis for non-axisymmetric deformation of finite
cylinders is the approximate solution by Dougall (1914), who introduced three displacement functions.
There is, however, no exact analysis for solving non-axisymmetric problems for finite cylinders involving
loads on the curved surface and with traction-free end surfaces. The stress analysis for cylinders under the
diametral PLST (present problem) is one of these unsolved non-axisymmetric problems for finite circular
cylinders. As mentioned earlier, the only approximation for a finite cylinder under the diametral PLST is
the solution by Wijk (1980) and Chau (1998).

Therefore, the objective of this paper is to present a new analytic solution for finite cylinders under the
diametral PLST. Although the problem considered here is physically similar to that considered by Chau
(1998), the solution forms for the displacement functions to be introduced here are completely different. In
fact, the proper choice of these solution forms is the most challenging problem in the analysis of the present
cylinder problem. The solution form to be given here is original as no appropriate solution form has been
proposed previously for non-axisymmetric problems of solid cylinders, including the problem of the di-
ametral PLST. In addition, the point loads are modeled more realistically by indentors acting upon the
solid cylinders in this study (Fig. 1). The contact stress between the curved surface of the cylinder and the
spherical heads of the indentors is expanded into a double Fourier series so as to match the boundary
values of the internal stress field.

The results of the study should provide the fundamental understanding of the tensile stress field within a
finite cylinder under the diametral PLST. In addition to the practical application to the diametral PLST, the
present study also provides a general solution technique for the stress analysis for cylinders subjected to
arbitrary normal stress on the curved surface and zero traction on the two end surfaces. This solution
technique is particularly useful when we consider problems involving short cylinders and with significant
end effect.

2. Mathematical formulation of the problem

The finite cylindrical specimen considered is of radius R (or diameter D) and length 2L, and is assumed
to be homogeneous, linear elastic and isotropic. The origin and z-axis of the cylindrical polar coordinate
(r, 0,z) system coincide with the center and the axis of symmetry of the specimen as shown in Fig. 1. The
basic equations for elastic solids, including the Hooke’s law and equilibrium equations, have been given in
Chau (1998) and will not be repeated here.

When the specimen is subjected to the diametral PLST, all the surfaces of the specimen are traction-free
except for the contact stress within the elliptical contact zones between the spherical heads of the indentors
and the curved surface of the cylinder (Fig. 1). More specifically, the boundary conditions for the finite
cylinder under the diametral PLST are (Chau, 1998)

Oz = 07 Oz = 07 020 = 0 (1)
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on r = R, where P is the magnitude of the applied point load. The contact zone parameters (i.e. @ and b) can
be evaluated by Eq. (13) of Chau (1998). In obtaining Eq. (2), we have assumed the contact to be smooth
and frictionless. A double Fourier expansion with respect to z and 6 is applied to the contact stresses (Chau,
1998)

oo o0

0,(R,2,0) = > " yDyycos (1,2) cos (2n0), (4)

n=0 m=0
where
1/4 form=n=0,

r=<1/2 form=0n#00rm+#0,n=0, (5)
1 forn > 0and m > 0,

3P [ [ g : R :
D, = 2L [/0 sin” fcos (17,,bcos f3)Jo({sin ) dﬁ—i—/o sin”cos (17,,bcos f)J»({sin f)df|, (6)
where
{=2na/R and 1, :’"T“. (7)

Note that these expressions are similar to those given by Chau (1998) after some minor mistakes are
corrected.
3. Series solution for the displacement functions

The following two displacement functions @ and ¥ are adopted from Chau (1998) (except for a minor
typing error):

X6 10w | @6 oy oy
. 1O =t o wwwe (12 ?
b ra i T i o - (L=)Vi@+ (1 =2v) 751, (8)
where
10/ 0\ 1@

By employing Eq. (8), it can be shown that the three equilibrium equations are converted to the fol-
lowing two uncoupled partial differential equations for @ and ¥

V40 = VPV =0, V¥ =0, (10)

where V? is the Laplacian operator, or V2 = V| + 0?/dz2. By applying the two displacement functions
given in Eq. (8), the stress components can be expressed in terms of the two displacement functions @ and
¥, which have been given in Egs. (20)—(24) of Chau (1998). However, minor typing mistakes were found in
Chau (1998); thus, Appendix A reports the corrected expressions for the sake of completeness.
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The most important step of the analysis is to assume appropriate forms for the two displacement
functions such that both the governing equations (10) and the boundary conditions (1)—(3) can be satisfied.
After tedious steps of trial and error, the following two series expressions for @ and ¥ are proposed:

1 b, (n,, _
¢ = ZG{ —+ Co P+ Z{Honrznz + Z [ mnl 42 (1,7) + B,,,,,Iz,,(nmr)} sin (1,,2)

n=0

+ Z% [Cousinh (7,2) + Dy zcosh (7,2)] o (75r) } cos (2n0) } (11)

s=11/s

[o@]

1 o En :
V= _E {Z [EOIIF + ; ﬂm IZ" nm )Cos(nm )‘| sin (2”0)}, (12)

0

where 1,, = mn/L, 7, = A;/R, and A, is the sth root of J; () = 0 (i.e. derivative of the Bessel function),
Ja.(x) and I, (x) are the Bessel and modified Bessel functions of the first kind of order 2n respectively, and
Ao, Co, Hon, Eony Ayny By Cony Dy and E,,,, are unknown coefficients to be determined by the boundary con-
ditions (1)—(3). When we chose the present form of Egs. (11) and (12), we tried to include all meaningful
terms (i.e. those leading to non-zero and relevant stress field) that are solutions to the governing equations
(10). Since the periodicity of the pair of point loads on the circumference is © (Fig. 1), the periodicity of
displacement functions @ and ¥ in § must also be © (i.e. sin(2x70) and cos(2n0)). The first two terms in Eq.
(11) lead to constant normal stresses (it is evident from the expressions of stresses to be given later), and the
first term within the summation for index # results from considering the term m = 0 in the next summation.
The first term in the summation for index n in Eq. (12) results from considering the term m = 0 in the next
summation. It is straightforward to show that the forms of @ and ¥ given in Eqgs. (11) and (12) satisfy the
governing equations (10) identically. A major difference between Eq. (11) and the corresponding form given
in Eq. (32) of Chau (1998) is the inclusion of the additional summation for index s involving hyperbolic
functions sinh(y,z) and cosh(y,z).

In the analysis by Chau (1998), the solution of Eq. (10) is given in the form of the product of the
modified Bessel function and sin/cosine. Actually, there is one more general solution for the first part of Eq.
(10) which can be expressed as the product of the Bessel functions and the hyperbolic functions. Although
this latter form has been proposed by Schiff (1883) (cited by Filon, 1902), and has subsequently been
adopted by Saito (1952, 1954) and Ogaki and Nakajima (1983), it should be emphasized here that the
present form for @ given in Eq. (11) is more general than the corresponding functions given by Schiff (Saito
(1952, 1954) or Ogaki and Nakajima (1983)) because the present form is for the non-axisymmetric case
whilst those by the previous workers are restricted for axisymmetric cases. For example, in axisymmetric
cases the modified Bessel functions involved are of zero and first orders and all 8-dependent terms do not
exist, whereas in the present analysis the Bessel and modified Bessel functions are of order 2n and sin or
cosine dependency exists. Furthermore, the second displacement function ¥ does not exist (or is identically
zero) in the axisymmetric case. Thus, the form for ¥ is completely new.

If Cy, = Dy, = Cy = Ay = Hyp, = Ey, = 0, the two displacement functions @ and ¥ given in Eqgs. (11) and
(12) reduce to the corresponding expressions by Chau (1998).

4. General expressions for stresses

Substitution of Egs. (11) and (12) into Egs. (A.1)—(A.6) given in Appendix A yields the following ex-
pressions for the stress components
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5. Determination of unknown coefficients

Specializing the shear stresses (16) and (17) to the end boundary conditions given in Eq. (1) (i.e.
o, and g, = 0 on z = +L), we have

(Csn + 2vDy,) sinh (y,L) + D,y Lcosh (y,L) = 0. (19)

This equation can be rewritten as

CS” _ Dsn _ @ (20)
2vsinh (y,L) +y,Lcosh(y,L) —sinh(y,L) A’

where Gy, and A are constants introduced to simplify the equations involved in the subsequent analysis.
Note that because there is only one unknown constant for the first term of Eq. (20), A, is only an arbitrary
constant to scale Gy, (which is to be fixed later). Then, the constants C;, and Dy, can be re-written in terms
of the newly introduced constants as

Gy, .
C,=— 1 [2vsinh (y,L) + y,Lcosh (y,L)], @D

S

Dy, = (/;f" sinh (y,L). (22)

S

Substituting Egs. (21) and (22) into Eq. (15), then specializing the resulting stress to z = +L, we have

0. =2(2—v)Co+ (1 —v)4y + i{i{AmnD(Q —v =)L, (1,,7) + N1 (1,,7)]

1l
NgE
o 1

+an12n(’1mr)}( - l)m + A

= [1,L + sinh (y,L) cosh (y,L) )2 (7, } cos (2n0) (23)

S
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The first of the boundary conditions (1) requires that the normal stress is identically zero on the two end
surfaces (i.e. 6., =0 on z = £L), independent of both r and 0. In view of this, we expand all terms with
r-dependency (i.e. the modified Bessel functions) in Eq. (23) into series expansion of Bessel function
(Watson, 1944) and then assume the following value for Aj:

Ay = vy,L + sinh(y,L)cosh(y,L). (24)
We should emphasize that A; is simply an additional constant introduced in Eq. (20) such that the final

expression can be represented in a more compact form. Therefore, it can be set arbitrarily. Subsequently,
Eq. (23) is simplified to the following compact form:

0. =2(2—v)Co+ (1 —v)do + ZZ{GM + > {422 = v = )T + Up] + BT}

n=0 s=1 m=1
X (—1)’"}J2,,(ysr) cos (2nf), (25)
where
Ty = 2%, 0, Rlnnet (1, R)Jon () + T (1, R)omer (25)] (26)
ms ()vsz _ 4n2)[(7’]mR)2 N j,f]Jzzn(,lA) nm 2n+1 nm 2n\ s Lsd2n nm 2n+1\4s )]s
2,2n,R (4n — 2)n,,R
Ums = T - mRI n mR J: n /15 + /13] n mR J n ;”s
(/lf —4"2)[(’7an)2 +)v32]J22n(/15){ (”ImR)2 +}“§ (MR D1 (1,R) T2 (4s) on (N R) 241 (4s)]
dni,

+ m [’7mRIZn (’7mR)J2nfl (}“3) + }~S[2n71 (”mR)JZH(;Ls)] + ’7mRI2n (nmR)JZn(;LS)

- lsIZH—l('/ImR)JZH—l(/’LS)}' (27)

The procedure in obtaining Eqgs. (26) and (27) is reported briefly in Appendix B for the sake of com-
pleteness. Finally, the end boundary condition (6., =0 on z = +L) yields the following equations for the
unknown coefficients:

2(2—v)Co + (1 —v)4y =0, (28)
G + i{Amn 22 —=v—n)Tu+ Uy + BunTrs }(—=1)" = 0. (29)

m=1

So far, all boundary conditions on the two end surfaces given in Eq. (1) have been considered. The next
step is to ensure that the boundary conditions (2) and (3) on the curved surface will be satisfied. Substi-
tution of Eq. (16) into the shear traction-free condition (2) (i.e., g,. = 0 on r = R) leads to

Amn 612:1 (77 R) 62]2,,(17 R) an 612,,(1’] R) nEmn I2n(’7 R)
2 _ m _R m m m — X
M [( ' 3)( or or? T, o m, R ‘ (0)
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To consider the boundary condition for the shear stress a,9, we, by applying a similar technique leading
to the results given in Eqgs. (28) and (29), substitute Egs. (21) and (22) into Eq. (18) and specialize the result
on r = R. Then, all cosh(y,z) and y,zsinh(y,z) terms involved are expanded into series of cos(#,z) and the
final form is

o > 4nvG,, sinh® (3,L) Jon(3R) = | 2nd 021, (17,,R)
_ 2n—2 5 n\rs n\Hm
2nB,, [ 1 0L,(n,,R) 1 En 1 0L,(n,R) 4n? 0L, (n,,R)
;751 |:R or len(nmR) + 2173” R or + R2 IZ"(”’an) + or
X\ G,y 8n(—1)"sinh’(p,L) L (n,R) [ 13 .
— g al m__ 2n0). 31
; As o 0 L2 +n2) [ PR €05 (1y2) ¢ sin (2n6) GD

Subsequently, we can apply the second of the boundary conditions (2) to Eq. (31). That is, the shear stress
0,9 on the curved boundary is identically zero for any value of z and 6, and this leads to

> 4nvG,, sinh® (L) Ja,(7,R)
2n— 5
2n(2n — 1)(Ho, — Eon)R —§ Tl 2R (32)
2nA,., 62[2,1(7] R) 2nB,, |1 0L,(n,R) 1 E,., 1 0L,(n,,R) 4n?
2 — m — b, __ANIm 7 T "
U or? n [R o R (r. R )} +2113n [ R o " (1, R)
L, (n,,R e —1)"sinh®(y,L) J5,,(7,R) 2
. ‘ 3 " —v| =0 33
T } Z: vs +115) R e 3

Note that Eq. (32) results from setting the first two terms of Eq. (31) to zero, and Eq. (33) results from
setting the remaining terms to zero (since shear stress must be identically zero independent of the index m1).
In order to satisfy the last boundary condition (3), we set » = R in Eq. (13) to yield

n=0

(ZV — 1)C0 + VAO + Z{ 2]1 2n — 1)(H0n + EOn)Rzn + Z{ mn |:2V[2n(’7m )

m=1

_ L 262[2n(’]mR) + Ra3]2n(77mR) _ % 62]2,,(11,"1?) + ZnEmn I2n('7mR>
n or? or? n? or? n? R?

1 6]2,,(17,,113) > . 4
"R or cos (1,,2) — ; [(Csn + D) cosh (yz) + Dgy,zsinh (y,2)] —— 7R =532 (7sR)
+ [(Csu + (2v + 1)Dy,) cosh (,z) + Dy,p,zsinh (ysz)}Jzn(ySR)} } cos (2n0). (34)

Before we apply the boundary condition, we again substitute Egs. (21) and (22) into Eq. (34) and expand
all functions of z-dependency in terms of cos(n,,z),
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Finally, equating all the coefficients of Eq. (35) to those of Eq. (4) for all terms of z and 6, we have
(2V — I)C() + VA() = D00/4, (36)

> Gy, 8n2vy, sinh* (L) Ja,(7,R)
2n—2 sn s s nA\/s
~2n(2n — 1)(Ho, + Eo)R* 2 + Y 1 L PR

s=1

= Dy, /2, (37)

1 6212”(’7 R) 6312”(7] R) an 6212;1(’7 R) ZnEmn 1211(’7 R)
Amn 2vI n mR —— 2 mn R m _ m m
[ i) "/3,, [ o e H oo o { R
1 0h,( 17m io: Gy 4y,(—=1)"sinh*(p,L) [ 12 | 4n? - 4ny
R ~ A L2 +n) P2\ PR 2R
_ [ Dy/2 forn=0, m>0,
N Dmn for n > 0, m > 0.

} Jon(7,R)

(38)

By now, all the boundary conditions have been satisfied, and all unknown coefficients can be uniquely
determined. More specifically, the unknown constants 4y and C, can be solved from Egs. (28) and (36) and
Ay Buns Enn and Gy, can be solved from the coupled system of equations (29), (30), (33) and (38). Finally,
Hy, and E;, can be solved from Egs. (32) and (37), and Cy, and Dy, can then be back-calculated from Egs.
(21) and (22). Therefore, the form of the displacement functions given in Egs. (11) and (12) is indeed
appropriate and complete. Numerical results for our analytical solutions are given and discussed in Section
6.

6. Numerical results and discussion

The analytic results given in the previous section involve the solutions of systems of coupled equations
for the coefficients of the infinite series. In actual computation, we have to truncate the infinite series and
retain only finite number of terms.

In addition, the roots of J;,(x) = 0 play a very important role in our series solution, and therefore it is
necessary to calculate the values of these roots accurately and efficiently. Thus, we discuss briefly here our
strategy in obtaining these roots. As discussed by Watson (1944), the smallest root 4, of J; (x) = 0 can be
bounded by

{2n(2n+2)} (for 1<n<?2)

2an+ 31 (for n > 2) {4n(2n + 1)} (39)
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So the first root can be established within this range by using a standard procedure (e.g., Press et al., 1992).
Once this first root is obtained, we can generate the subsequent roots efficiently if the following properties
are noted (Wei, 1999): (i) The difference between any two non-zero consecutive roots equals approximately
n if x is large; (ii) There must exist a root of J; _,(x) = 0 between any two consecutive roots of J; (x) = 0;
(iii) Consequently, there must exist a root of J;,(x) = 0 between any two consecutive roots of J;, | (x) = 0.

Numerical calculations show that the system of equations for solving A4,,,, By, E.n and G, becomes ill-
conditioned for large m and s. More specifically, the coefficients for 4,,,, B,., and E,, become relatively large
compared to those for G,,. Thus, a proper scaling of the coefficient is proposed to alleviate the problem of
ill-conditioning. In particular, we divide all coefficients for A4,,, B,., and E,,, with I,,(n,,R) and multiply all
coefficients for G, with A(i.e. 4., B and E,,, are scaled by multiplying 5,,(#,,R), whereas G, is scaled by
dividing /4,), and after solving 4,,,, By, Emn and Gy, all solutions of 4,,,, B, and E,,, are divided by 5,(n,,R)
while the solution for G, is multiplied by 4,. We found that more terms in m than in n are needed for
acquiring the same degree of convergence for o.., while more terms in n than in m are needed for acquiring
the same degree of convergence for gyy. In general, 50 terms in z and 25 terms in each of m and s are needed
to control the error of tensile stresses o,. and oy to within 1%.

Before we discuss the distribution of the tensile stress within the cylinder, it is instructive to compare the
present solution with the approximation by Wijk (1980) for the tensile stress at the center of the cylinder.
Table 1 compares the tensile hoop stresses at the center of the cylinder predicted by Wijk (1980) and by the
present solution, for cylinders with geometric ratio L/D = 1 and oo, and for Poisson’s ratio v=0, 0.1, 0.2,
0.3, 0.4, and 0.5. In addition, instead of idealizing the two applied point loads to two point forces as Wijk
(1980) did, we have considered the contact problem between the indentors and the cylinder. Therefore, our
solutions for the hoop stress depend on the values of the Young’s modulus and the actual magnitude of the
point force at failure. We present in Table 1 the results based on different Young’s moduli and point forces
for the case of L/D = 1. It is clear from Table 1 that Wijk’s (1980) solution overestimates the values of the
tensile stress (about 4% for L/D = 1, and about 0.3% for L/D — oo). Wijk’s (1980) approximation is much
better for a longer cylinder than for the case of L/D = 1. This is expected because the end surface boundary
conditions were satisfied only approximately by Wijk’s (1980) solution. Note that when v increases, the
tensile hoop stress decreases in magnitude, whereas when E increases, the tensile hoop stress increases in
magnitude. Although the increase in P results in a decrease in the hoop stress, double the value in the
applied force only leads to a difference of 0.1% in the tensile hoop stress. Therefore, the effect of magnitude
of the point force is negligible. Although the approximation by Wijk (1980) is considered to be very ac-
curate, we will show next that the maximum tensile stress is not necessarily at the center of the specimen.

Table 1
Comparison of the theoretical predictions of the normalized tensile hoop stress, Geenier/ (P/D?), at the center of a solid circular cylinder
under the diametral PLST given by Wijk (1980) and by the present study*

Poisson’s L/D=1.0 L/D — oo
ratio Wijk (1980) Present Wijk (1980) Present (£ = 70 GPa
P =20 kN)

E=40GPa, E=70GPa E =70 GPa
P =10kN P=10kN P =20kN

0.0 0.7678 0.7360 0.7365 0.7358 0.7372 0.7352

0.1 0.7144 0.6865 0.6870 0.6863 0.6877 0.6858

0.2 0.6685 0.6436 0.6441 0.6435 0.6448 0.6430

0.3 0.6284 0.6061 0.6066 0.6060 0.6072 0.6056

0.4 0.5931 0.5730 0.5734 0.5729 0.5740 0.5725

0.5 0.5618 0.5435 0.5439 0.5434 0.5444 0.5431

#Note that the results by Wijk (1980) were re-calculated to four significant digits.
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Figs. 2 and 3 plot the normalized stresses 649/, 0../0¢, and a,,/ao (where oo = P/D?) versus the nor-
malized distance r/R for various sizes of contact zone ry/R (where rq is a nominal radius for the elliptical
contact area between the spherical heads of the indentors and the curved surface of the cylinder and is
defined as ry = v/ab). The plots are calculated for the standardized size and shape of specimens suggested by
Broch and Franklin (1972) and by ISRM (1985). More specifically, we have assumed the following para-
meters: D = 50 mm, 2L =70 mm, R, = 5 mm and v = 0.25. By following the usual sign convention of
continuum mechanics, tension is plotted as positive. As shown in Figs. 2 and 3, both a4y/0¢ and o../0, are
tensile along the line joining the two point loads, and a zone of tensile stress concentration is developed at
about r/R ~ 0.9, compared to the roughly constant value at the central portion of the line (say for
r/R < 0.6). Both figures show that the smaller the loading area, the larger the maximum tensile stress in-

15
0l ro/R= 0.039
0.048

- 0.061
& 57 G0/ 0.083
bé 0 - r'R
5
3 0.8 !
© -5

10

15 \

Fig. 2. The normalized stresses o9/ 09, and g,./a, versus r/R along the line joining the two point forces for various values of r,/R and
for v=0.25, L/D = 1.4 and R, = 5 mm.

15
ro/R=0.039
10 | 0.048
0.061
5 | GZZ/GO 0.083
0 . —— r/'R

15 \

Fig. 3. The normalized stresses o0../ad¢, and o,,/a versus r/R for various values of ry/R and for v=0.25, L/D = 1.4 and R, = 5 mm.
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duced. It is very interesting to note that both the tensile stress distribution (o¢9/09) and the compressive
stress distribution (a,./0y) along the line joining the two applied point loads are remarkably similar to those
in a sphere under the diametral PLST (Wei and Chau, 1998; Chau and Wei, 1999) and of a cylinder under
the axial PLST (Wei et al., 1999). Note that, as suggested by experimental observations, it is commonly
believed that specimens fail catastrophically in tensile fracture under diametral PLST. And the results for
the axial and hoop stresses given in Figs. 2 and 3 further verify this observation analytically.

Since both the hoop stress agy and the axial stress o, are tensile, it is necessary to check which one is the
maximum tensile stress and thus responsible for the tensile failure of the specimen. Therefore, Fig. 4
compares the normal stresses (o¢9/09,0../00 and o,./6¢) in a typical specimen along the normalized dis-
tance r/R. The plot is for /R = 0.039 and other parameters are the same as those used in Fig. 2. For this
case, 0.,/0 is larger than g9/, in the central part, but ayy/0, increases faster than o../oy when the point
loads are approached. Consequently, the maximum tensile stress of the specimen is controlled by a4 /00,
and this maximum tensile stress is usually induced at about »/R = 0.9. Therefore, for the following nu-
merical results, only a9/ 0y is plotted if the standard geometric ratio 2L/D = 1.4 is used. However, it should
be noted that the hoop stress is not always the dominant tensile stress; when Poisson’s ratio is relatively
large, with 2L/D < 1.4 and ro/R > 0.083, the maximum tensile stress in a specimen may be controlled by
0../0o. However, for the specific parameters used in Figs. 5 and 6, the hoop stress is always the dominant
tensile stress. Therefore, only the tensile hoop stress (not the axial stress) will be given for Figs. 5 and 6.

The effect of Poisson’s ratio on the stress distribution is illustrated in Fig. 5, which plots the normalized
stresses ogy/0y and a,, /0y versus the normalized distance /R for various Poisson’s ratio v. The loading area
is fixed at ro/R = 0.039, and parameters used are the same as those given in Fig. 2. The smaller the Poisson’s
ratio, the larger the maximum tensile stress induced. But the tensile stress at the central part along the line
of loading and the compressive stress distribution along the same line are insensitive to the change of
Poisson’s ratio. It is interesting to note that the maximum tensile stress concentrations near the point loads
disappear and thus the maximum tensile stress is at the center when the solid becomes incompressible
(v=20.5).

The size effect of the spherical head of the indentor (R,) is demonstrated in Fig. 6, which plots the
normalized stresses og9/a¢ and a,./a, versus the normalized distance »/R for various values of R, and for
ro/R = 0.039. Except for varying R,, the plots are the same as those given in Fig. 2. As expected, a smaller
radius of the spherical head R, leads to a higher tensile stress concentration. For example, the maximum

15
699/00
- 10 |
&
& 5 L G,,/0y
5
> 0 r/R
3 0.8 1
L -5
° 10
-15

Fig. 4. A typical stress distribution of the normalized stresses ay9/09, 0../0 and a,,/ay versus /R for v =0.25 and r,/R = 0.039.
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Fig. 5. The normalized stresses a¢y/0a9, and o, /0y versus r/R for various values of v and ry/R = 0.039.

20
R,= 3mm
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10 | 7mm
0'99/00
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Fig. 6. The normalized stresses agp/09, and a,./a¢ versus /R for various values of R, and r,/R = 0.039.

tensile stress may increase by 35% if R, = 3 mm is used instead of the standard size of R, =5 mm (ISRM,
1985).

Fig. 7 shows the maximum normalized stresses oypy/gy and o../ay (which appear at about »/R = 0.9)
versus half length to diameter ratio L/D for different Poisson’s ratio v and for D = 50 mm. The solid lines
are for the maximum value of ayy/0( and the dotted lines are for those of g../0y. The maximum value of
o,./0o decreases drastically with the increase of L/D while the drop of a4/ with L/D is relatively gentle.
Consequently, for v = 0.25 the axial stress is the dominant tensile stress for L/D < 0.4 and the hoop stress
becomes dominant for larger L/D, and for v = 0.35 the geometric ratio L/D that separates the dominance
between the axial and hoop stresses equals 0.7. Note that v-dependency of the tensile stress is the same as
that shown in Fig. 5. Since a larger tensile stress concentration implies a smaller PLSI (I, = P, /D?, where
P 1s the applied point force at failure), a clear shape effect of PLSI is observed in Fig. 7. This shape
dependency has been observed repeatedly on natural rocks (Broch and Franklin, 1972; Greminger, 1982).
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Fig. 7. The maximum normalized tensile stresses agy/09, and o../ao versus L/D for various values of v and for D = 50 mm and
ro/R = 0.039. The dotted and solid lines are for the axial and hoop stresses respectively.

To further illustrate the shape effect on the maximum tensile stress (i.e. the maximum among the axial
and hoop stresses), Fig. 8 plots the maximum stress envelope versus L/D for various values of Poisson’s
ratio. For v > 0.25, the maximum tensile stress is insensitive to the shape as long as L/D > 0.7, but for
v = 0.08, the maximum tensile stress continues to decrease even for L/D > 0.7. This illustrates that the
shape effect is more severe for more compressible solids or rocks (i.e. rocks with small Poisson’s ratio).

Fig. 9 shows these tensile stress envelopes versus L/D for different diameters of the specimens. The size
effect is apparent and such an effect has been observed repeatedly in experiments (e.g. Broch and Franklin,
1972; Brook, 1980). For specimen size smaller than 50 mm, the shape effect can be neglected if the L/D is
larger than 0.4, but, for larger specimen (say D = 80 mm) the maximum stress continues to decrease even
for L/D > 0.7, which is a value recommended by Broch and Franklin (1972) to remove the shape effect. To
avoid this shape effect, ISRM (1985) recommended a value of L/D > 0.5 while Broch and Franklin (1972)
suggested a value of L/D > 0.7. Our analytic solutions show, however, that if Poisson’s ratio is small (say
v < 0.1) and the size of the cylinder is large (say D = 80 mm), the shape effect cannot be ignored even for
L/D > 0.7. Therefore, either large specimen size should be avoided for the diametral PLST or a correction
factor for size effect must be applied even for L/D > 0.7. It is important that this theoretical prediction
should further be verified by experiments because it differs from the recommendation by ISRM (1985) (i.e.
L/D > 0.7 was recommended to remove shape effect regardless of the size).

7. Experimental validation

A series of the diametral PLST were carried out on cylinders of a rock-like plaster material. A total of
over 40 cylinders were cast using a plastic hollow mould of various size (D = 35, 40, 50, and 56 mm) and
shape factors (L/D = 0.4, 0.5, 0.63, 0.76, 0.86 and 1.0). These specimens were made of a water—plaster
mixture with water/plaster mass ratio of 3/10; other mechanical properties for the material are v = 0.25,
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Fig. 8. The maximum tensile stress envelopes versus L/D for various values of v and for D = 50 mm. The dotted and solid lines are for
axial and hoop stresses respectively.

E = 17.5 GPa, the uniaxial compressive strength (UCS)=157.54 MPa, and density = 1.75-1.78 g/cm’.
When the plaster mixture was poured into the mould layer by layer, it was tapped by using a small wooden
hammer to minimize the content of air and to achieve a homogeneous solid with reproducible properties.
The tests were carried out after all the samples were cured for 60 days and had attained a constant weight.
For more discussion on the requirements of judging a rock-like material using the Buckingham pi-theorem,
we refer to Wong and Chau (1998).

40
7 v=0.25
2 30+t D=80mm
(/2] S
. .
‘0
5wl
= D=50mm
= 10 D_%\
S - =30mm
0 1 1 1
0 04 0.8 1.2 1.6
L/D

Fig. 9. The maximum tensile stress envelopes versus L/D for various values of D and for v = 0.25. The dotted and solid lines are for
axial and hoop stresses respectively.
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To determine the maximum allowable local tensile stress of the plaster material under the diametral
PLST, the theoretical stress profiles of three specimens with D = 56 mm and L/D = 1.4 were calculated
using our analytic solution. The magnitudes of the point forces at the failure of each specimen, together
with other elastic properties of the material, were substituted into our solution. Fig. 10 shows the predicted
stress profiles for a4, 0., and o,, versus the normalized distance »/R. Stress profiles for these three specimens
basically overlap and cannot be distinguished easily on the figure. The calculated maximum tensile stresses
for these specimens are 26.1, 25.9 and 26.3 MPa with an average of 26.1 MPa, corresponding to failure
loads of 5.54, 5.37 and 5.73 kN. In order to predict the failure load for samples of other size and shape, we
assume that if the maximum tensile stress in the solid reaches 26.1 MPa (which will be called the local
tensile strength hereafter), the specimen fails. From a microscopic point of view, this assumption implies
that a critical local tensile stress of 26.1 MPa is needed to initiate unstable crack growth within the sample.
It should be noted that this critical tensile stress is different from the uniaxial tensile strength of solid for
which there is no orthogonal compressive stress associated with. To see whether this assumption of “local
tensile strength” is valid or not, the size and shape effects predicted by using this assumption are considered
next.

By using this local tensile strength, the maximum point force, and hence the PLSI, can be predicted for
specimens of any shape and size. Fig. 11 plots the predicted PLSI (or /) versus L/D together with our
experimental results for specimens of D = 56 mm. Basically, theoretical prediction agrees well with ex-
periments. Our theoretical calculations show a very strong shape effect for L/D < 0.3 for D = 56 mm. As
remarked earlier, this shape effect has been observed in other experimental studies (e.g. Broch and Franklin,
1972; Greminger, 1982). Note that for L/D < 0.2, it is very difficult to prepare a homogeneous specimen
because of the thin thickness. Thus, the predicted sharp drop in /;, may not be verified easily by experiments.

The predicted size effect together with our experimental data on the PLSI is shown in Fig. 12. Specimens
of diameter of 35, 40, 50, and 56 mm were tested. The trends of the predicted and observed size effects agree
very well. The experimental results appear to be systematically smaller than the theoretical predictions. The
reason for this is not known, but it may be related to the additional size effect due to the microstructures of

the solid as compared to the size effect considered here, induced primarily by the size of the contact zone
between the specimen and the indentor.

30

20 -

r'R

Go9> Ozz> O (MPa)

Fig. 10. The theoretical stress distributions for a4y, 6, and oy versus r/R for three plaster specimens of size D = 56 mm (v = 0.25 and
E = 17.5 GPa).
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Fig. 11. The theoretical and experimental point load strength index (I, = P/D?) versus the geometric ratio L/D for the rock-like plaster
material and for D = 56 mm.
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Fig. 12. The theoretical and experimental point load strength index (I, = P/D?) versus the diameter D for the rock-like plaster material
for L/D =0.7.

Fig. 4(a) of ISRM (1985) shows the typical modes of failure of specimens under the diametral PLST
observed in experiments. In particular, specimens are normally broken into two or three pieces. The re-
lation between these modes of failure in the PLST and the shape of the specimens has not been studied
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T-mode S-mode
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Fig. 13. A sketch of the two failure modes (T-mode and S-mode) of cylinders under the diametral point load strength test (6, and 0, are
defined as the two minimum angles between the cracks and the transverse line joining the two applied point loads).

before, and the main reason is probably due to the lack of information on the tensile stress field inside the
specimens.

Fig. 13 sketches two typical modes of failure observed in our experiments (we call them T-mode and S-
mode for indicating Tri-fracture and Single-fracture in the failure mechanism), while Table 2 tabulates the
failure mode and pattern for 9 particular samples that we have tested. One should not confuse the S-mode
with the shear type failure. In fact, all these failures observed in the diametral test are tensile in nature
because both the axial and hoop stresses are, as illustrated earlier, tensile in nature. It is observed that for
cylinders with L/D = 0.4, T-mode is more likely to occur, while for cylinders with L/D > 0.5, S-mode
appears to be dominant. Note that out of the 36 samples with L/D > 0.5 that we have tested, only three

Table 2

Summary of some of the observed failure patterns®
Sample no. L/D I, (MPa) Failure mode 0, (°) 0, (°)
1 0.40 1.69 T 8 50
2 0.40 1.64 T 25 50
3 0.40 1.68 T 50 30
4 0.40 1.54 S 18 18
5 0.50 1.73 S 45 45
6 0.63 1.74 S 60 80
7 0.70 1.88 S 60 60
8 0.86 1.85 S 35 45
9 1.00 1.86 S 35 60

#The T-mode and S-mode are depicted in Fig. 13 and 0, and 0, are defined as the two minimum angles between the cracks and the
transverse line joining the two applied point loads.
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samples failed in the T-mode. This observation can be explained by checking the numerical results showed
in Fig. 8. In particular, for L/D = 0.4 and v = 0.25, Fig. 8 shows that the magnitudes of a4y and o, are
comparable. That is, tensile failure is likely to occur along both axial and transverse directions; thus, multi-
fracture shown in the T-mode of Fig. 13 is more likely to occur than the S-mode. However, for longer
cylinders (say L/D > 0.5) the tensile stress envelope shown in Fig. 8 suggests that the maximum ten-
sile stress is always dominated by ag4; thus, we speculate that a single fracture may be more likely to oc-
cur. However, more elaborated analysis and experiments are still required to make our conclusion more
definite.

8. Conclusion

This paper presents a new analytic solution for the stresses inside an isotropic solid circular cylinder of
finite length subjected to diametral PLST. The method of solution uses the displacement function approach
together with double Fourier expansion for the contact stress, which is obtained by considering the Hertz
contact problem between the indentors and the curved surface of the cylinder. Appropriate forms for the
displacement functions are proposed so that all boundary conditions and all governing equations can be
satisfied. Numerical results show that, similar to the results for a sphere under the diametral PLST or a
cylinder under the axial PLST, tensile stress concentrations are developed near the point loads. The
maximum tensile stress decreases with the increase of Poisson’s ratio, the contact area, the radius of
spherical heads of the indentors, but increases with the increase of diameter D. The hoop stress is
the dominant tensile stress for long cylinders (say L/D > 0.7), but the axial stress may become dominant
if L/D is small (say <0.4). The proximity of the values of normal stresses (g4 and o..) also provide a
plausible explanation why specimens break into three pieces for D/L = 0.4, but into two pieces when
D/L > 0.5. Both size and shape effects of specimens on the PLSI, which is defined as P/D?, are predicted
by our solution, and these predictions agree well with our experiments. For specimens with large diame-
ter size (say D = 80 mm), the shape effect is not negligible even for L/D > 0.7. Therefore, specimens with
large diameter are not recommended for the diametral PLST. In addition to the practical application to
the diametral PLST, the present study should also provide a general solution technique for the stress
analysis of cylinders under arbitrary normal stress on the curved surface and zero traction on the two end
surfaces.
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Appendix A. Stresses in terms of the displacement functions
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Appendix B. Fourier—Bessel expansion for L,(1,r) and ,,rbL, 1(1,,r)

By applying Fourier—Bessel expansion (Watson, 1944), L,(n,r) and n,,rh,_1(n,r) involved in Eq. (23)
can be expressed in terms of J,(y,#) as

]271 ’/Im ZTWIAJZVI VS (Bl)
’1mr[2n 1 nm ZUm\‘JZn ’VA (B2)
where
2&2 R
Tms = . rI”l mrJﬂ sr dr7 B3
Py / o (1,700 (3,7) (B.3)
272 R E
Ums = 2 m [,1, mt J,, Vs dr. B4
T, ) (B4)

Note again that y, = A;/R and /A, is the root of J; (1) =0. To integrate (B.3) exactly, we first note the
following formula (5.54.1 of Gradshteyn and Ryzhik, 1980):

K RJyi1(0,,R) 20 (As) — AsJ2n(1,,R)T2ns1 (As
/ 1o (11,,7)Jon (7,7) A = NBRI2n 1 (1, R)2n ( 2) . 20 (1, R)J2n11 (4s) (B.5)
0 Mn — Vs
and the following identities
Ly () = (=1)" S (in,,r) (B.6)
121’1+1('1mr) = _i(_l)nJZVI‘H(inmr) (B7)

Substitution of Egs. (B.6) and (B.7) into Eq. (B.5) and then into Eq. (B.3) yields Eq. (26) given in the text.
To see the validity of Eq. (27), we first consider the following derivatives:
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and

d
O [ Lt (0,7) 201 (257)] = 407y (1,7) 201 (257) + 17 (1L (0,7) Ton 1 (757
= Vsl2-1 (1,7 2n (0,7)]- (B.9)

We then consider the integration of an equation resulting from the subtraction of Eq. (B.9) x y, from Eq.
(B.8) x1,, and by virtue of Eq. (26) the expression given in Eq. (27) can be derived.
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